手腕驱动的矫形器设计用于帮助脊髓损伤的人,然而,这种控制策略所施加的运动限制可以阻碍移动性并导致身体运动异常。本研究表征了使用新型尼古斯掌握器,一种适配器矫正器的身体补偿,允许对未受害手动功能进行对象掌握的掌握。受试者执行一系列掌握和释放任务,以比较正常(测试控制)和约束的腕驱动模式,显示出由于约束而显示的显着补偿。电动机增强模式也与传统的手推车运作进行比较,以探讨混合人体机器人控制的潜在作用。我们发现被动手推车和电机增强模式都满足了在测试的各种任务中实现了不同的角色。因此,我们得出结论,一种灵活的控制方案,可以基于手头的任务改变干预的措施具有减少未来工作补偿的可能性。
translated by 谷歌翻译
While the brain connectivity network can inform the understanding and diagnosis of developmental dyslexia, its cause-effect relationships have not yet enough been examined. Employing electroencephalography signals and band-limited white noise stimulus at 4.8 Hz (prosodic-syllabic frequency), we measure the phase Granger causalities among channels to identify differences between dyslexic learners and controls, thereby proposing a method to calculate directional connectivity. As causal relationships run in both directions, we explore three scenarios, namely channels' activity as sources, as sinks, and in total. Our proposed method can be used for both classification and exploratory analysis. In all scenarios, we find confirmation of the established right-lateralized Theta sampling network anomaly, in line with the temporal sampling framework's assumption of oscillatory differences in the Theta and Gamma bands. Further, we show that this anomaly primarily occurs in the causal relationships of channels acting as sinks, where it is significantly more pronounced than when only total activity is observed. In the sink scenario, our classifier obtains 0.84 and 0.88 accuracy and 0.87 and 0.93 AUC for the Theta and Gamma bands, respectively.
translated by 谷歌翻译
Applying deep learning concepts from image detection and graph theory has greatly advanced protein-ligand binding affinity prediction, a challenge with enormous ramifications for both drug discovery and protein engineering. We build upon these advances by designing a novel deep learning architecture consisting of a 3-dimensional convolutional neural network utilizing channel-wise attention and two graph convolutional networks utilizing attention-based aggregation of node features. HAC-Net (Hybrid Attention-Based Convolutional Neural Network) obtains state-of-the-art results on the PDBbind v.2016 core set, the most widely recognized benchmark in the field. We extensively assess the generalizability of our model using multiple train-test splits, each of which maximizes differences between either protein structures, protein sequences, or ligand extended-connectivity fingerprints. Furthermore, we perform 10-fold cross-validation with a similarity cutoff between SMILES strings of ligands in the training and test sets, and also evaluate the performance of HAC-Net on lower-quality data. We envision that this model can be extended to a broad range of supervised learning problems related to structure-based biomolecular property prediction. All of our software is available as open source at https://github.com/gregory-kyro/HAC-Net/.
translated by 谷歌翻译
Data-driven modeling approaches such as jump tables are promising techniques to model populations of resistive random-access memory (ReRAM) or other emerging memory devices for hardware neural network simulations. As these tables rely on data interpolation, this work explores the open questions about their fidelity in relation to the stochastic device behavior they model. We study how various jump table device models impact the attained network performance estimates, a concept we define as modeling bias. Two methods of jump table device modeling, binning and Optuna-optimized binning, are explored using synthetic data with known distributions for benchmarking purposes, as well as experimental data obtained from TiOx ReRAM devices. Results on a multi-layer perceptron trained on MNIST show that device models based on binning can behave unpredictably particularly at low number of points in the device dataset, sometimes over-promising, sometimes under-promising target network accuracy. This paper also proposes device level metrics that indicate similar trends with the modeling bias metric at the network level. The proposed approach opens the possibility for future investigations into statistical device models with better performance, as well as experimentally verified modeling bias in different in-memory computing and neural network architectures.
translated by 谷歌翻译
Tumor segmentation in histopathology images is often complicated by its composition of different histological subtypes and class imbalance. Oversampling subtypes with low prevalence features is not a satisfactory solution since it eventually leads to overfitting. We propose to create synthetic images with semantically-conditioned deep generative networks and to combine subtype-balanced synthetic images with the original dataset to achieve better segmentation performance. We show the suitability of Generative Adversarial Networks (GANs) and especially diffusion models to create realistic images based on subtype-conditioning for the use case of HER2-stained histopathology. Additionally, we show the capability of diffusion models to conditionally inpaint HER2 tumor areas with modified subtypes. Combining the original dataset with the same amount of diffusion-generated images increased the tumor Dice score from 0.833 to 0.854 and almost halved the variance between the HER2 subtype recalls. These results create the basis for more reliable automatic HER2 analysis with lower performance variance between individual HER2 subtypes.
translated by 谷歌翻译
Cryo Focused Ion-Beam Scanning Electron Microscopy (cryo FIB-SEM) enables three-dimensional and nanoscale imaging of biological specimens via a slice and view mechanism. The FIB-SEM experiments are, however, limited by a slow (typically, several hours) acquisition process and the high electron doses imposed on the beam sensitive specimen can cause damage. In this work, we present a compressive sensing variant of cryo FIB-SEM capable of reducing the operational electron dose and increasing speed. We propose two Targeted Sampling (TS) strategies that leverage the reconstructed image of the previous sample layer as a prior for designing the next subsampling mask. Our image recovery is based on a blind Bayesian dictionary learning approach, i.e., Beta Process Factor Analysis (BPFA). This method is experimentally viable due to our ultra-fast GPU-based implementation of BPFA. Simulations on artificial compressive FIB-SEM measurements validate the success of proposed methods: the operational electron dose can be reduced by up to 20 times. These methods have large implications for the cryo FIB-SEM community, in which the imaging of beam sensitive biological materials without beam damage is crucial.
translated by 谷歌翻译
最近,神经场景表征在视觉上为3D场景提供了令人印象深刻的结果,但是,他们的研究和进步主要仅限于计算机图形或计算机视觉中的虚拟模型的可视化,而无需明确考虑传感器和构成不确定性的情况。但是,在机器人技术应用程序中使用这种新颖的场景表示形式,需要考虑神经图中这种不确定性。因此,本文的目的是提出一种新的方法,用于使用不确定的培训数据训练{\ em概率的神经场景表示},这可以使这些表示形式纳入机器人技术应用中。使用相机或深度传感器获取图像包含固有的不确定性,此外,用于学习3D模型的相机姿势也不完美。如果这些测量值用于训练而无需考虑其不确定性,则结果模型是非最佳的,并且所得场景表示可能包含诸如Blur和Un-Cheven几何形状之类的伪影。在这项工作中,通过以概率方式专注于不确定信息的培训来研究与学习过程的不确定性整合问题。所提出的方法涉及以不确定性项的明确增加训练可能性,以使网络的学习概率分布相对于培训不确定性最小化。可以证明,除了更精确和一致的几何形状外,这还导致更准确的图像渲染质量。对合成数据集和真实数据集进行了验证,表明所提出的方法的表现优于最先进的方法。结果表明,即使训练数据受到限制,该提出的方法也能够呈现新颖的高质量视图。
translated by 谷歌翻译
ICECUBE是一种用于检测1 GEV和1 PEV之间大气和天体中微子的光学传感器的立方公斤阵列,该阵列已部署1.45 km至2.45 km的南极的冰盖表面以下1.45 km至2.45 km。来自ICE探测器的事件的分类和重建在ICeCube数据分析中起着核心作用。重建和分类事件是一个挑战,这是由于探测器的几何形状,不均匀的散射和冰中光的吸收,并且低于100 GEV的光,每个事件产生的信号光子数量相对较少。为了应对这一挑战,可以将ICECUBE事件表示为点云图形,并将图形神经网络(GNN)作为分类和重建方法。 GNN能够将中微子事件与宇宙射线背景区分开,对不同的中微子事件类型进行分类,并重建沉积的能量,方向和相互作用顶点。基于仿真,我们提供了1-100 GEV能量范围的比较与当前ICECUBE分析中使用的当前最新最大似然技术,包括已知系统不确定性的影响。对于中微子事件分类,与当前的IceCube方法相比,GNN以固定的假阳性速率(FPR)提高了信号效率的18%。另外,GNN在固定信号效率下将FPR的降低超过8(低于半百分比)。对于能源,方向和相互作用顶点的重建,与当前最大似然技术相比,分辨率平均提高了13%-20%。当在GPU上运行时,GNN能够以几乎是2.7 kHz的中位数ICECUBE触发速率的速率处理ICECUBE事件,这打开了在在线搜索瞬态事件中使用低能量中微子的可能性。
translated by 谷歌翻译
混合整数凸面和非线性程序MICP和MINLP具有表现力,但需要长时间解决时间。结合了数据驱动方法的求解器启发式方法的最新工作表明,有可能克服此问题,从而可以在更大规模的实际问题上进行应用。为了通过数据驱动的方法在线求解混合企业双线性程序,存在几种配方,包括具有互补约束(MPCC),混合智能编程(MIP)的数学编程。在这项工作中,我们将这些数据驱动方案的性能基于具有离散模式开关和避免碰撞限制的书架组织问题的性能。将成功率,最佳成本和解决时间与非DATA驱动方法进行比较。我们提出的方法被证明是用于书架问题的机器人臂的高级计划者。
translated by 谷歌翻译
FM合成是一种众所周知的算法,用于从紧凑的设计原始素中生成复杂的音色。通常具有MIDI接口,通常是不切实际的,从音频源进行控制。另一方面,可区分的数字信号处理(DDSP)已通过深度神经网络(DNN)启用了细微的音频渲染,这些音频渲染学会了从任意声音输入中控制可区分的合成层。训练过程涉及一系列音频进行监督和光谱重建损失功能。这样的功能虽然非常适合匹配光谱振幅,但却存在缺乏俯仰方向,这可能会阻碍FM合成器参数的关节优化。在本文中,我们采取了步骤,从音频输入中连续控制良好的FM合成体系结构。首先,我们讨论一组设计约束,通过标准重建损失来简化可区分的FM合成器的光谱优化。接下来,我们介绍可区分的DX7(DDX7),这是一种轻巧的体系结构,可根据一组紧凑的参数来进行乐器声音的神经FM重新合成。我们在从URMP数据集中提取的仪器样品上训练该模型,并定量证明其针对选定基准测试的音频质量可比。
translated by 谷歌翻译